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Kinetics of inhomogeneous cooling in granular fluids

Subir K. Das and Sanjay Puri
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India

~Received 6 September 2002; published 14 July 2003!

We study the dynamical behavior of a freely evolving granular gas, where the particles undergo inelastic
collisions. The velocity and density fields exhibit complex pattern dynamics, which is reminiscent of phase
ordering systems. For example, in the initial time regime, the density field stays~approximately! uniform, and
the system is said to be in ahomogeneous cooling state~HCS!. At later times, the density field undergoes
nonlinear clustering, and the system continues to lose energy in aninhomogeneous cooling state~ICS!. We
quantitatively characterize the HCS→ICS crossover as a function of system parameters. Furthermore, we study
nonlinear growth processes in the ICS by invoking analogies from studies of phase ordering dynamics.
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I. INTRODUCTION

There has been much recent interest in the propertie
powders or granular materials@1–3#, which consist of assem
blies of mesoscopic particles with sizes ranging from 10mm
to 1 cm. These materials are of obvious scientific and te
nological relevance, and exhibit features intermediate
those of solids and fluids. There have been many stu
@1–3# of the static properties of these systems, e.g., form
tion and structure of granular heaps; stress-distribution p
files in sand-piles, etc. The dynamical properties of granu
systems are also of great interest. An important character
of grains is that they undergo inelastic collisions which d
sipate the system energy. Thus, granular systems exhib
teresting dynamical behavior only when the collisional e
ergy loss is compensated by the input of energy fr
external driving, and the system settles into a~nonequilibri-
um! steady-state behavior. In this context, experimental
have considered various standard geometries for agita
granular systems; e.g., horizontal and vertical vibrations o
platform @4#, pouring through a chute@5#, rotation in a drum
@6,7#, etc. All of these experimental situations give rise
diverse examples of pattern formation, which have been
great research interest.

In this paper, we focus on the dynamical evolution of
initially homogeneous system of inelastic granular particl
The system is not externally driven in any manner. The
fore, inelastic collisions between particles result in a loss
energy or ‘‘cooling’’ of the system. This problem has r
ceived considerable attention in the literature@8–22#. In the
initial stages, the system is in ahomogeneous cooling stat
~HCS!, with the density field being approximately uniform
@8#. However, the HCS is linearly unstable to fluctuation
and the system evolves into aninhomogeneous cooling stat
~ICS!, where particle-rich clusters are formed and grow@9#.
This instability occurs only for wavelengths larger than
critical wavelength that depends on the inelasticity param
@15#. The primary focus of many earlier studies has been
time-dependent evolution of averaged system quantities,
average energy per particle or ‘‘temperature.’’ However, t
is inadequate because both the HCS and ICS are chara
ized by strong correlations in the density and velocity fiel
In a recent work, van Noije and co-workers@16# and Baldas-
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sariet al. @22# have undertaken preliminary studies of corr
lations in the density and velocity fields in the HCS and IC
In particular, these authors have emphasized the analogy
tween the ICS and the behavior of a phase-ordering sys
i.e., the dynamical evolution of a homogeneous multicom
nent mixture that has been rendered thermodynamic
unstable by a rapid quench below the critical temperat
@23–25#.

In this paper, we present detailed results from molecu
dynamics~MD! simulations of the HCS and ICS. In particu
lar, we focus upon the morphological features of the den
and velocity fields in the HCS and ICS, and their nonline
evolution @26#. We invoke analogies with phase-orderin
systems to clarify the evolution of the granular gas; e.g.,
dynamical scaling of correlation functions and structure f
tors, general features of scaling functions, the domain gro
laws, etc. Of course, the physical mechanisms driving cl
tering in both cases are completely different, as we will e
cidate later.

This paper is organized as follows. In Sec. II, we provi
an overview of analytical and numerical results available
this problem. In Sec. III, we present detailed numerical
sults from our simulations. Finally, Sec. IV concludes th
paper with a summary and discussion of our results.

II. OVERVIEW OF EARLIER RESULTS

A. Analytical results

The HCS was first studied by Haff@8#, and corresponds to
a state with uniform density and temperature; and a coa
grained velocity field which is identically zero. The granul
temperature is defined asT5^v2&/d; where ^v2& is the
squared average of the granular velocity distribution,d is
the dimensionality, and we set the mass of granular parti
to unity. The homogeneous system cools in timet as Ṫ(t)
52ev(T)T/d, where e512e2, e being the coefficient
of restitution. Here,v(T) is the collision frequency a
temperature T, and has the approximate form
v(T)5p21/2Vdx(n)nsd21T1/2 @27,16#, where Vd
52pd/2/G(d/2) is the total solid angle andx(n) is the pair
correlation function at contact for hard spheres with num
density n and diameters. The initial temperature of the
granular fluid isT0, and we setv(T)5v(T0)(T/T0)1/2.
©2003 The American Physical Society02-1
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These considerations yield Haff’s cooling law for th
HCS, T(t)5T0„11@ev(T0)/2d#t…22. It is also useful to
considert(t), which is the average number of collisions su
fered by a particle till timet. We have

t~ t !5E
0

t

dt8v~ t8!5
2d

e
lnF11

ev~T0!

2d
t G . ~1!

In terms oft, the Haff’s cooling law has the simple form
T(t)5T0e2(e/d)t.

The granular system does not remain in the HCS for
time, as both the velocity and density fields are unstable
fluctuations. The first study of this is due to Goldhirsch a
co-workers@9#, who proposed a nonlinearshear instability
mechanism for the growth of inhomogeneities in the den
field. A subsequent study of this is due to McNamara@11#,
who investigated linearized hydrodynamic equations for
driven granular gases@14,15#. A recent, thorough exposition
of linear instabilities of the HCS is due to van Noije an
co-workers ~NE! @16#. These authors demonstrate that
noise reductionmechanism leads to transverse instabilities
the velocity field, i.e., short-wavelength fluctuations a
eliminated more rapidly due to momentum conservation,
sulting in a multivortex pattern on diverging length scale
Pattern formation in the velocity field precedes the em
gence of inhomogeneities in the density field, which we d
cuss next. The growth of the vortex scale is diffusive, i.
Lv(t).2pj'A(e/d)t, wherej'.A(2d/e) l 0, with l 0 being
the time-independent mean free path@ l 05A2T/v(T)#.

The length scale for longitudinal fluctuations behaves
L uu.2pj uuA(e/d)t, wherej uu.(2d/e) l 0. However, both the
transverse and longitudinal fluctuations are exponenti
damped in time. This should be contrasted with the fluct
tions in the density field, which are driven by longitudin
velocity fluctuations. These actually grow with time~for
length scalesl.j uu), and must be saturated by an approp
ate nonlinearity. However, the linear stability analysis yie
the initial growth dynamics for clusters, i.e.,L(t).L uu(t).

B. Numerical results

The Haff’s law for the HCS was confirmed ind51 MD
simulations by McNamara and Young@12#, and Sela and
Goldhirsch@10#; and ind52 MD simulations by Goldhirsch
and co-workers@9#, McNamara and Young@13#, Luding
et al. @18#, and Luding and Herrmann@20#. In particular,
Luding et al. @18# considered collisions of rough granula
particles ind52,3, and confirmed that Haff’s law applies fo
both translational and rotational energies.

As stated earlier, our primary interest is to study the n
linear regime of pattern dynamics in the ICS. The appeara
of the clustering instability was first demonstrated nume
cally by Goldhirsch and co-workers@9,10#, and McNamara
and Young@12#. A recent study of this problem is due t
Luding and Herrmann~LH! @20#, who performedd52 MD
simulations for a range ofe values and studied the tim
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dependence of the average cluster sizeL(t). LH argue that
their numerical data are consistent with a power-law grow
L(t);tu, whereu.0.3. In this context, we should remar
that long-time simulations encounter problems with inelas
collapse, where a group of particles may undergo an infin
number of collisions in a finite time period. This problem h
been studied in some detail by Bernu and Mazighi@28#, and
McNamara and Young@12,13#. In their simulations, LH use
the so-calledtime-of-contactmodel@19# to avoid unphysical
problems due to inelastic collapse.

Finally, we would like to discuss a recent investigation
Baldassarriet al. ~BMP! @22#, who formulated a simple lat-
tice model to mimic inelastic collisions of granular particle
BMP have obtained an interesting range of analytical a
numerical results~in d52) from their model. In particular,
they focus upon various aspects of the evolving veloc
field, e.g., distribution functions, correlation functions, stru
ture factors, autocorrelation functions, etc. They find that
characteristic scale of the transverse and longitudinal ve
ity structure factors grows asLv;t1/2, consistent with the
analytical results of NE.

This concludes our overview of earlier work on the kine
ics of cooling in inelastic granular fluids. To summariz
there is a good understanding of the HCS, and the H
→ICS crossover. However, our understanding of the kine
of cooling and pattern evolution in the ICS is relatively lim
ited. In the present work, we perform comprehensive sim
lations of d52 granular fluids for a range of densities an
inelasticities. Our goal is to obtain a thorough characteri
tion of nonlinear domain growth in the ICS. In particular, w
will highlight the analogies between domain growth in t
ICS and phase-ordering dynamics in thermodynamically
stable systems.

III. DETAILED NUMERICAL RESULTS

A. Details of simulations

We use an event-driven algorithm for solving the Newto
ian dynamical equations for an assembly of inelastic p
ticles @29#. The collision process conserves momentu
though the energy is continuously dissipated due to the
elastic nature of granular particles. We consider identi
hard spheres~monodispersed system! with unit mass (m
51) and diameters51. After a collision between thei th
and j th particles, having velocitiesvW i and vW j , respectively,
the new velocities are obtained asvW i , j8 5vW i , j2@(11e)/

2#@ n̂•(vW i , j2vW j ,i)#n̂ @29#. Here,n̂ is the unit vector parallel to
the relative position of the particles, pointing fromj to i at
the time of collision. For elastic collisions, we havee51.
For granular materials,e,1 in general.

In our simulations, there are two different definitions
time. First, we havereal time t, which is measured in arbi
trary units. Second, we also measure time in units of
number of collisions per particle, which we denote ast. In
the HCS,t andt are related by Eq.~1!. Most of our subse-
quent results are presented in terms oft, as this constitutes a
more natural measure of time for the present problem.
2-2
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The initial condition for a run consisted of a homog
neous distribution of circular particles in ad52 box of size
(Nbs)2 with periodic boundary conditions. Thus, the ave
age packing fraction isf5pN/(4Nb

2), whereN is the num-
ber of particles. We always fixNb5256 and varyN, as speci-
fied below. We will usually label our numerical results usi
the number fractionn5N/Nb

2 . ~For particles of unit diam-
eter, the number fraction and number density are identic!
We initialize the particle velocities with uniformly distrib
utedamplitudesin @0,Nbs# andphasesin @0,2p#. Thus, the

initial value of the average kinetic energy isE(0)5^vW 2&/2
5(Nbs)2/6. The particles are allowed to collide elastica
for a sufficiently long time, e.g.,t5100, till the velocity
profile equilibrates to the Maxwell distribution~which is
confirmed numerically!. This constitutes the initial condition
for our MD simulation of freely evolving inelastic har
spheres.

We characterize the dynamical evolution of the granu
gas using various statistical quantities, which are calcula
as an average over five independent runs up tot5500.
These are~a! equal-time correlation functions and structu
factors for the density and velocity fields, and~b! domain
growth laws for the characteristic length scales of the den
and velocity fields. The precise definitions of these quanti
will be provided subsequently.

Before we conclude this section, it is appropriate to d
cuss the parameter ranges in our simulations. As stated
lier, we fix the box size asNb5256. Numerical data are
obtained for the following parameter sets:~i! N530 000~or
n.0.46, f.0.36), ande ranging from 0.8 to 0.975 in step
of 0.025. ~ii ! e50.90, andN ranging from 10 000 to 40 000
in steps of 5000, i.e.,n.0.15–0.61.

B. Evolution morphologies

Figure 1 shows the evolution of thed52 inelastic granu-
lar gas from a homogeneous initial condition. The syst
parameters weren.0.46 ande50.90. The snapshots ar
labeled by the collision timet, which refers to the number o
collisions per particle. We will always measure time in un
of t, which accounts for the reduced collision frequency d
to the cooling process. In Fig. 1, the frames on the left-ha
side ~LHS! and right-hand side~RHS! refer to the granular
velocity field vW (rW,t) and the density fieldc(rW,t), respec-
tively. The coarse-grained fields at a lattice point are
tained by averaging over boxes of size (5s)2 centered at tha
point. To clarify the nature of pattern formation, we ha
‘‘hardened’’ the velocity field in Fig. 1, i.e., the length of a
vectors has been set to unity. The velocity field is assig
the value zero at points with no particles in the associa
coarse-graining box. Such points are unmarked in Fig. 1.
density field on the RHS of Fig. 1 is depicted in a bina
representation. We introduce the order parameterc(rW,t)
with values11(21) at points, where the number density
larger than ~less than! the average number density (n
.0.46, in this case!. Regions wherec511 are marked
gray, and regions wherec521 are unmarked.
01130
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In Fig. 1, the evolution of the velocity field is characte
ized by the emergence and diffusive coarsening of vortic
There is a progressive parallelization of the local veloc
field due to inelastic dissipation of the normal velocity com
ponents. As discussed earlier, pattern evolution in the den
field is slower than that for the velocity field. Nevertheles
well-defined clusters corresponding to the ICS are alre
seen in the snapshot att550. These clusters grow with tim

FIG. 1. Evolution of an inelastic granular gas from a homog
neous initial condition. The system density wasn.0.46; and the
restitution coefficient wase50.90. The initial kinetic energy pe
particle wasE(0)5(Nbs)2/6, whereNb5256 is the system size
ands is the particle diameter. Further details of the simulation
provided in the text. The frames on the LHS refer to the coar
grained velocity field. The vector directions correspond to the
rection of the local velocity field—the magnitudes have been ‘‘ha
ened’’ to unity. For clarity, we only show a 322 corner of the 2562

lattice, as indicated in the snapshots on the RHS. The frames o
RHS correspond to the coarse-grained density field. Regions w
the local density is larger than and less than the average densit
marked in grey and white, respectively. The black circles in
RHS frames denote the vortex centers in the velocity field. T
snapshots are labeled by the appropriate collision timet, viz., the
average number of collisions per particle.
2-3
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in a manner reminiscent of phase ordering in two-compon
systems@23#. The vortex centers in the velocity field are al
shown~as black circles! in the frames on the RHS. One se
that the vortex density diminishes with time, and the dis
bution of vortices is primarily confined to regions of lo
density, as there is a rapid parallelization of velocities in
high-density region due to multiple collision process
There is no strong correlation between the location of defe
in the velocity field~i.e., vortices! and defects in the densit
field ~i.e., interfaces or domain boundaries!. Furthermore, the
various time scales in this problem, including the emerge
of the ICS, diverge ase→0 or e→1.

C. Homogeneous cooling state and crossovers

Let us first briefly focus on the HCS and the HCS→ICS
crossover. Figures 2~a! and 2~b! plot ln@E(t)/E(0)# vs t for a
range of (e,n) values. Figure 2~a! corresponds ton.0.46
and e50.85,0.90,0.95. The initial exponential decay cor
sponds to Haff’s cooling law, and the solid lines have slop
2e/d. There is a crossover timetc , after which Haff’s
law does not apply and the cooling rate becomes slow
Similarly, Fig. 2~b! corresponds to e50.90 and n
.0.15,0.31,0.46. The initial slope is seen to be independ
of n ~as expected!, but the crossover timetc does depend on
n. In Figs. 2~a! and 2~b!, the crossover time is defined as th
point of deviation from Haff’s law, i.e., where the data poin
no longer lie on the corresponding solid line.

FIG. 2. ~a! Plot of ln@E(t)/E(0)# vs t, whereE(t) is the average
particle energy at timet. We present data forn.0.46, ande
50.85, 0.90, 0.95, as indicated. The solid lines have sl
2e/2 (e512e2) and correspond to Haff’s cooling law ind52.
~b! Analogous to~a!, but for e50.90 andn.0.15, 0.31, 0.46. The
line has slope2e/2. ~c! Plot of ln@E(t)/E(0)# vs lnt for the param-
eter values shown in~a!. The solid line has a slope of21. ~d!
Analogous to~c!, but for the parameter values shown in~b!.
01130
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The crossover time can be estimated from the work
Brito and Ernst@17# as follows. In the HCS, the Haff cooling
law is T(t)5T0e2(e/d)t. Brito and Ernst use mode-couplin
techniques to obtain the asymptotic energy decay~in the
ICS! as

T~t!.
T0

2n S d21

j'
d

1
1

j uu
dD S 4pe

d
t D 2d/2

. ~2!

Figures 2~c! and 2~d! test the validity of this asymptotic ex
pression by plotting ln@E(t)/E(0)# vs lnt for the parameter
values in Figs. 2~a! and 2~b!, respectively. In each case~apart
from n.0.15,e50.90), we see that the asymptotic coolin
behavior is consistent withE(t);t21, i.e., thed52 version
of Eq. ~2!. For the low-density case withn.0.15, it is pos-
sible that our simulation has not accessed the asymp
regime.

A comparison of Haff’s law and Eq.~2! yields the cross-
over timetc as the solution of

tc
d/2e2(e/d)tc.

~d21!

2 S Vd

4p D d

x~n!dnd21, ~3!

where s51, and we consider the casee→0 so that
j uu@.(2d/e) l 0#@j'@.A(2d/e) l 0#. For d52, Eq. ~3! sim-

e
FIG. 3. Dependence of crossover timetc for the HCS→ICS

transition on system parameters. The crossover time is obta
from the energy plots in Figs. 2~a! and 2~b! as the point of deviation
from Haff’s law. ~a! Plot of e(e/2)tc vs tc for n.0.46; ande ranging
from 0.80 to 0.975. The solid line denotes the best linear fit to
data.~b! Plot of tce

2(e/2)tc vs nx(n)2 for e50.90; andn ranging
from 0.08 to 0.61. Again, the solid line denotes the best linear fi
the data.
2-4
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plifies astce
2(e/2)tc;nx(n)2, where we ignore the prefac

tors. Following NE @16#, we use the Henderson-Verle
Levesque approximation@30# for the d52 hard-sphere
correlation function at contact, viz.,

x~n!5
127f/16

~12f!2
, ~4!

wheref is the packing fraction.
Figure 3~a! plots e(e/2)tc vs tc for n.0.46 and a range o

e values~specified in the figure caption!. Figure 3~b! plots
tce

2(e/2)tc vs nx(n)2 for e50.90 and a range ofn values
~also specified in the figure caption!. These approximately
linear plots confirm the validity of the scaling behavior
tc(e,n), expected from Eq.~3!.

D. Pattern dynamics in the inhomogeneous cooling state

Next, let us focus on the main theme of this paper, v
quantitative characterization of the pattern morphology, a
evolution for the density and velocity fields. In this conte
we would like to invoke an analogy between the patte
dynamics in Fig. 1 and the dynamics of phase order
@24,25#. Of course, the underlying mechanisms of dom
growth are quite different in both cases. For example, se
gation dynamics in a binary mixture is driven by surfa
tension ~absent in granular materials! between dissimilar
components. On the other hand, in the case of granular ga
segregation arises in a purely dynamical context due to
reinforcement of density fluctuations arising from higher c
lision frequency and faster cooling in regions of high dens

The granular fluid can be described by nonlinear hyd
dynamic equations for the density, velocity, and tempera
fields, in conjunction with an energy loss term@9#. Wakou
et al. @31# have shown that fluctuations in these quantit
obey time-dependent Ginzburg-Landau~TDGL! equations of
phase ordering dynamics with a nonconserved order par
eter@24#. In this paper, we elucidate the TDGL description
granular dynamics.

There are two important classes of phase-ordering
tems @24,25#: ~a! systems with nonconserved order para
eter, e.g., ordering of a ferromagnet;~b! systems with con-
served order parameter, e.g., phase separation of a b
mixture. The following nonlinear equation describes the n
equilibrium evolution of AB mixtures ~in dimensionless
units!:

]c~rW,t !

]t
5~2¹2!m@c~rW,t !2c~rW,t !31¹2c~rW,t !#, ~5!

where c(rW,t) is an order parameter that differentiates b
tween A-rich (c511, say! and B-rich (c521, say! re-
gions. Equation~5! with m50 is referred to as TDGL equa
tion, and describes the systems in class~a! above. The
corresponding evolution from a random initial condition
shown in the upper RHS frame of Fig. 4. The coarsen
system is characterized by a diffusive growth lawL(t)
;t1/2 @23–25#. On the other hand, Eq.~5! with m51 is
referred to as the Cahn-Hilliard~CH! equation, and describe
01130
.,
d
,
n
g

e-

es,
e

-
.
-

re

s

m-

s-
-

ary
-

-

g

the systems in class~b! above. A typical evolution snapsho
for the CH equation~from a random initial condition with
^c&5c0520.08, as in Fig. 1! is shown in the lower RHS
frame of Fig. 4. In this case, the domain growth process
slower and the length scale of the coarsening domains ob
the Lifshitz-Slyozov~LS! law L(t);t1/3 @23–25#.

The clustering states in the ICS~Fig. 1! are pictorially
similar to the ordering patterns in the TDGL model. This is

FIG. 4. Evolution pictures from a random initial condition fo
phase-ordering systems. The lattice size is 2562, and periodic
boundary conditions are applied in both directions. The upp
middle, and lower LHS frames are obtained from simulations of
nonconservedXY ~NC-XY) model; globally conservedXY ~GC-

XY) model with^cW &50; and conserved XY~C-XY) model, respec-

tively. ThecW field is hardened~i.e., ucW u51) and the direction vec-
tors are plotted in the snapshots on the LHS. For clarity, we o
show a 322 corner of the 2562 lattice. The upper, middle, and lowe
RHS frames are obtained from simulations of the nonconser
TDGL ~NC-TDGL! model; globally conserved TDGL~GC-TDGL!
model; and CH model, respectively. In the GC-TDGL a
CH simulations, the average value of the order paramete
^c&520.08, corresponding to an average density ofn50.46, as in
Fig. 1. Regions with density greater than the average density
marked in grey.
2-5
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S. K. DAS AND S. PURI PHYSICAL REVIEW E68, 011302 ~2003!
variance with the intuitive expectation that the ICS patte
should be analogous to those in the CH model, becaus
the conservation law governing the density field. Howev
the conservation law in the ICS evolution is global rath
than local, because particles stream freely across em
spaces and are deposited on distant clusters. In the conte
phase ordering dynamics, it is known that systems with g
bal conservation of the order parameter are in the same
versality class as systems with nonconserved order param
@32,33#. The middle RHS frame of Fig. 4 shows an evoluti
snapshot for the TDGL equation with a global conservat
law ~referred to as the GC-TDGL equation where GC sta
for globally conserved!, which enforceŝ c&520.08 ~as in
Fig. 1!. Clearly, the morphologies for the NC-TDGL an
GC-TDGL equations are comparable. In this case, NC sta
for nonconserved. This pictorial analogy between the I
and patterns in the TDGL equation will be quantified lat
when we present results for correlation functions and str
ture factors.

Next, let us consider the velocity-field dynamics depict
in the frames on the LHS of Fig. 1. This evolution is rem
niscent of coarsening in theXY model @25#, which is the
two-component generalization of Eq.~5!:

]cW ~rW,t !

]t
5~2¹2!m@cW ~rW,t !2ucW ~rW,t !u2cW ~rW,t !1¹2cW ~rW,t !#,

~6!

wherecW [(c1 ,c2). The evolution in Eq.~6! parallelizescW
locally via the annihilation of vortices and antivortice
driven by the surface-tension reduction mechanism. Equa
~6! with m50 corresponds to the case with nonconserv
order parameter. A typical evolution picture for this case
shown in the upper LHS frame of Fig. 4. The correspond
domain growth laws@34# areLv(t);(t/ ln t)1/2 for d52 and
Lv(t);t1/2 for d.2. On the other hand, Eq.~6! with m51
corresponds to the conservedXY model @35,36#, where the
dynamics locally conserves bothc1 andc2. A typical evo-
lution snapshot for this case is shown in the lower LH
frame of Fig. 4. The associated domain growth laws for
conservedXY model areLv(t);t1/4 in d52, where the rel-
evant defects are vortices; andLv(t);(t ln t)1/4 in d53,
where the relevant defects are vortex strings@36,37#.

Intuitively, we might expect that domain growth in th
ICS velocity field is comparable to the conservedXY model
as the local parallelization of velocities~due to inelastic dis-
sipation of normal components! occurs in conjunction with
momentum conservation. However, because of the stream
of particles over long distances prior to collision, a mo
appropriate model is theXY equation with global conserva
tion (GC-XY). The middle LHS frame in Fig. 4 shows
typical snapshot for the GC-XY model with^vW &50. We will
now proceed to quantify the pictorial analogies discus
above.

The evolving granular gas is characterized by two len
scales in the ICS, i.e., the typical cluster sizeL(t) and the
characteristic vortex sizeLv(t). The existence of thes
length scales suggests that the morphology is statistic
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self-similar in time, and only changes by a time-depend
scale factor. Thus, we expect the density correlation func
to exhibit the dynamical-scaling property@38#:

Ccc~r ,t![
1

VE dRW [ ^c~RW ,t!c~RW 1rW,t!&

2^c~RW ,t&^c~RW 1rW,t!&#

5gS r

L~t! D , ~7!

whereV is the system volume, and the angular brackets re
to an averaging over independent runs. The correlation fu
tions presented here are always normalized so thatC(0,t)
51. In Eq. ~7!, g(x) is the scaling function that characte
izes the morphology, and is independent of time. The str
ture factor of the density field is defined as the Fourier tra
form of the correlation function, and has the followin
scaling form:

Scc~k,t![E drWeikW•rWCcc~r ,t!5L~t!dg̃„kL~t!…. ~8!

For the velocity field, we study the isotropized correlati
function

Cvv~r ,t![
1

VE dRW [ ^vW ~RW ,t!•vW ~RW 1rW,t!&

2^vW ~RW ,t&•^vW ~RW 1rW,t!&#

5hS r

Lv~t! D , ~9!

whereLv(t) is the characteristic length scale of the veloc
field. Definition in Eq.~9! averages correlation functions fo
the transverse and longitudinal components of the velo
field, which evolve on different time scales in the lineariz
regime@16#. The averaging procedure is reasonable when
patterns are isotropic and thekW vectors are randomly ori-
ented. The structure factor of the velocity field,Svv(k,t), is
obtained as the Fourier transform ofCvv(r ,t).

The correlation functions and structure factors presen
here are always computed for hardened coarse-grained fi
Thus, the fluctuations in the order-parameter field are se
61, as depicted on the RHS of Fig. 1. Similarly, the amp
tude of the velocity field is set to unity,uvW (rW,t)u51, as de-
picted on the LHS of Fig. 1. This procedure clarifies the t
regime of the relevant structure factor, which correspond
scattering from the cores of individual defects. There is
slight violation of the conservation laws due to hardenin
but we have confirmed numerically that this is negligible.
mentioned earlier, all statistical quantities presented here
obtained as averages over five independent runs.

Figure 5~a! examines the dynamical-scaling property
the density correlation function for (n,e)5(0.46, 0.90).
This figure superposes data forCcc(r ,t) vs r /L from three
different times~with t@tc) for the evolution depicted in
Fig. 1. The characteristic lengthL is defined as the distanc
2-6
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KINETICS OF INHOMOGENEOUS COOLING IN . . . PHYSICAL REVIEW E68, 011302 ~2003!
over which the correlation function decays to half its ma
mum value@Ccc(0,t)51#. The data collapse in Fig. 5~a! is
reasonable, confirming that the system evolution is descr
by a single length scale. The dashed line in Fig. 5~a! denotes
the analytic result due to Ohtaet al. ~OJK! @39# for ordering
in the NC-TDGL equation:

g~x!5
2

p
sin21~g!, ~10!

where g5exp(2r2/L2). On the other hand, the dot-dash
line denotes the scaled correlation function obtained from
simulation of the CH equation for phase separation. The
erage density for the CH simulation is chosen to be the s
as that for the granular gas, i.e.,^c&520.08. We have also
studied the correlation function for the GC-TDGL equati
with ^c&520.08. It is numerically indistinguishable from
the OJK function, except for a limited region (x.5), where

FIG. 5. ~a! Dynamical scaling of density correlation functio
Ccc(r ,t) for the evolution depicted on the RHS of Fig. 1~with n
.0.46 ande50.90). We superpose data forCcc(r ,t) vs r /L from
three different times~denoted by the specified symbols! with t
@tc . The characteristic lengthL(t) is defined as the distance ove
which the correlation function decays to half its maximum valu
The definition ofCcc(r ,t), and the relevant averaging statistics,
provided in the text. The dashed line denotes the OJK functio
Eq. ~10!. The dot-dashed line denotes the scaled correla
function ~at t51000) for a phase-separating lattice gas with
same average density, i.e.,n.0.46. ~b! Scaling plots of the
structure factors corresponding to~a!. We superpose data fo
ln@Scc(k,t)^k&2# vs ln@k/^k&# from three different times. The dashe
line denotes the OJK function, and the dot-dashed line denote
scaled structure factor~at t51000) for a phase-separating syste
with average densityn.0.46. The solid line has a slope of23 and
corresponds to thed52 Porod’s law, which characterizes scatteri
off the sharp interfaces.
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it has a very small negative value. This is a consequenc
the conservation law, which fixes*drWC(r ,t)50. For the
sake of clarity, we do not present the correlation function
the GC-TDGL equation in Fig. 5~a!.

Our numerical results for the correlation function in th
ICS are better approximated by the OJK function than
CH function in the region whereCcc.0. This provides a
confirmation of the pictorial analogy discussed earlier. Let
next discuss some general considerations that determine
cific features of the ICS morphologies. For example, the d
sity correlation functions decay linearly for smallx5r /L as
follows:

g~x!.12ax1bx31higher-order terms, ~11!

wherea,b are constants@25#. This is a consequence of th
presence of sharp domain boundaries between grain-rich
grain-poor regions. The nonanalytic small-x behavior of
g(x) results in a power-law decay of the structure fac
Scc(k,t);k2(d11) for large k, which is referred to as the
Porod tail@40#. Furthermore, the correlation functions obe
the sum rule*drWCcc(r ,t)5Scc(0,t)50, which is a direct
consequence of the conservation law. In the ICS correla
function, this sum rule is satisfied byCcc(r ,t) becoming
slightly less than zero over an extended range ofx values.
~This should be contrasted with the CH correlation functio
which exhibits marked oscillations before being damped
zero.!

We have mentioned earlier that the cluster growth proc
~streaming and aggregation! in the ICS obeys a global~rather
than local! conservation law. We speculate that the regi
whereCcc(r ,t),0 may constitute a nonscaling part of th
correlation function, which is pushed out tor /L5` as t
→`. In this case, the scaled correlation function would d
cay monotonically~as t→`) as in the case with noncon
served order parameter, e.g., Eq.~10!. Our numerical results
in Fig. 5~a! do not access this regime as yet.

Figure 5~b! shows the dynamical scaling of the structu
factors corresponding to Fig. 5~a!. In this case, the appropri
ate scaling length is defined asL(t);^k&21, where^k& is
the first moment of the structure factor. In the scaling regim
we expect all definitions of the characteristic length scale
be equivalent upto prefactors@23#. The tail of the structure
factors in Fig. 5~b! exhibits the Porod decay,Scc(k,t)
;k2(d11), which characterizes scattering off the sharp int
faces@40#. The dashed line denotes the OJK function, wh
constitutes an excellent fit to our numerical data. Discr
ancy forr /L>2 in Fig. 5~a! is reflected in the small-k data in
Fig. 5~b!. The scaled structure factor for the CH equation
denoted by a dot-dashed line. Note that the local conse
tion law for the CH equation results in a power-law behav
for small-k values,Scc(k,t);k4 ask→0 @41#. However, the
ICS structure factor appears to decay almost monotonic
from k501, as is usual for structure factors in orderin
problems characterized by a nonconserved order param
@Of course, global density conservation dictates t
Scc(0,t)50.#

Figure 6 shows the dynamical-scaling property for t
correlation function@Fig. 6~a!# and structure factor@Fig.

.
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6~b!# of the velocity field depicted in Fig. 1. In Fig. 6~a!, the
dashed line denotes the scaled correlation function for
nonconserved XY model ind52. We should point out tha
the scaled correlation function for the GC-XY model with

^vW &50 is numerically indistinguishable from the dashed li
in Fig. 6~a!. Hence, we do not show the GC-XY result in Fig.
6~a!. The analytic result for the NC-XY model @which has
O~2! symmetry# was obtained by Puri@34#, and generalized
to the O(n)-symmetric case by Bray and Puri@34# and
Toyoki @34#:

h~x!5
ng

2p FBS n11

2
,
1

2D G2

FS 1

2
,
1

2
;
n12

2
;g2D , ~12!

where g5exp(2r2/L2); B(x,y) is the b function; and
F(a,b;c;z) is the hypergeometric function. Equation~12! is
usually referred to as the BPT function. The short-dista
behavior of the scaling function is determined by the pr
ence of vortex defects, and has the following form@25,34#:

h~x!.12āx2ln x2b̄x21higher-order terms, ~13!

where x5r /Lv , and ā,b̄ are constants. This behavior
common to correlation functions for the inelastic granu
gas, as well as for theXY model. The singularity inh(x) as

FIG. 6. Analogous to Fig. 5, but corresponding to the coar
grained velocity field depicted on the LHS of Fig. 1.~a! The dashed
line denotes the BPT function in Eq.~12! with n52. The dot-
dashed line denotes the scaled correlation function~at t51000) for
the conservedXY model@36#. ~b! The dashed line denotes the BP
function, and the dot-dashed line denotes the scaled structure f
~at t51000) for the conservedXY model. The solid line has a slop
of 24 and corresponds to thed52 generalized Porod’s law fo
scattering off the vortex defects@34#.
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x→0 yields a power-law decay in the correspondi
structure-factor tail, which we will discuss shortly.

In general, the BPT function provides a good approxim
tion to the scaled correlation function for the ICS, except
the region whereCvv(r ,t),0 ~resulting from the conserva
tion law!. Again, we speculate that the region withCvv,0
may comprise a nonscaling portion that is pushed out
r /Lv5` as t→`. For completeness, we also plot in Fi
6~a! ~dot-dashed line! the scaled correlation function for th
conservedXY model, which is obtained numerically. Clearl
the velocity-field morphologies in the ICS are comparable
the nonconservedXY model ~or GC-XY model! rather than
the conservedXY model.

In Fig. 6~b!, the structure-factor tails again exhibit
power-law decay but with a different exponent than in F
5~b!, i.e., Svv(k,t);k2(d12) for large k. This is also the
characteristic of scattering off the defect cores, except
defects in the velocity field are vortices and have an O~2!
symmetry.@In general, the BPT function for the case wi
O~n! symmetry exhibits a ‘‘generalized Porod tail,’’S(k,t)
;k2(d1n) for a large k.# Furthermore, the BPT function
~dashed line! provides a good fit to the numerical data for th
ICS velocity field in Fig. 6~b!. Again, we see thatSvv(k,t)
decays almost monotonically fromk501 @thoughSvv(0,t)
50], with no marked effects of the conservation law. Th
should be contrasted with the scaled structure factor for
C-XY model, where C stands for conserved, which is d
noted as a dot-dashed line in Fig. 6~b! @36#.

Next, let us investigate the functional forms of the scali

-

tor

FIG. 7. ~a! Comparison of scaled density correlation functio
for (n,e)5(0.46,0.80), (0.46,0.90), and~0.31,0.90! ~denoted by
the specified symbols!. Data are computed at collision timet
5150. The dashed line denotes the OJK function.~b! Analogous to
~a!, but for the velocity correlation functions. Data are computed
collision timet5150. The dashed line denotes the BPT functio
2-8
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KINETICS OF INHOMOGENEOUS COOLING IN . . . PHYSICAL REVIEW E68, 011302 ~2003!
functions across a range of parameter values. Figure~a!
plots the scaled density correlation functions~all at time t
5150, t@tc) for (n,e)5(0.46,0.80), (0.46,0.90), an
(0.31,0.90). We see that the scaling functions are num
cally comparable, indicating that the ICS evolution morph
ogy is equivalent for different parameter values; even tho
the evolution time scales are quite different. We have c
firmed this superuniversal behavior for a wide range of
rameter values, and Fig. 7~a! is a representative result. Th
dashed line in Fig. 7~a! denotes the OJK function. We hav
confirmed numerically that the scaled correlation funct
for the GC-TDGL model has a rather weak dependence
the off criticality ^c&, and is numerically comparable to th
OJK function for a broad range of^c& values.~Of course, for
extreme values of the off-criticality, our numerical da
should be compared directly with the data for the GC-TDG
model and not with the OJK function.! This should be con-
trasted with the case of the CH model, where the correla
function has a sensitive dependence on the off-critica
@23#.

Figure 7~b! plots the scaled velocity correlation function
~all at t5150, t@tc) for the same parameter sets as in F
7~a!. The dashed line denotes the BPT function withn52.
In this case, the scaled correlation functions differ somew
for different parameter values. This is a consequence ofholes
in the velocity field, i.e., regions where the coarse-grain
velocity field is set to zero because no particles are prese
the coarse-graining box. At a fixed time, there are a lar
number of holes in the velocity field for theless elasticand
less densecases, and a correspondingly larger deviation fr
the BPT function. The appearance of holes in the coa
grained velocity field can be reduced by choosing lar
coarse-graining boxes. However, an upper limit on the b
size is set by the core size of vortex defects.

For the time regimes considered here, a description
terms of two uncoupled order parameters is reasonabl
more complete description of the asymptotic ordering
namics, which accounts for the holes in the velocity field
provided by a model with spin-vacancy phase separation
conjunction withXY-like ordering of the spin variable. Thi
is a generalization@42# of the Blume-Emery-Griffiths mode
@43#, where the spin exhibits an up-down ordering behav
In the current context, the relevant model has coupled n
conserved~or globally conserved! dynamics for the two or-
dering fields. At a later stage, we will discuss in detail t
applicability of this model to the ICS@44#.

Apart from the scaled correlation functions and struct
factors, it is also relevant to investigate the time depende
of various length scales in the evolving system. We ha
already discussed how the length scales for density clus
@i.e., domain sizeL(t)] and the velocity field@i.e., vortex
size Lv(t)] are obtained from the correlation function
There is no surface tension between unlike domains in
present case, so domain growth is driven by the diffus
motion of defects. Therefore, we expect thatL(t),Lv(t)
;t1/2, in accordance with the arguments of NE@16#. Figure
8~a! plots data for ln@L(t)# vs lnt for the three sets of (n,e)
values shown in Fig. 7. There is an initial transient per
with no domain growth, corresponding to the HCS~see Fig.
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2!. Subsequently, well-formed clusters grow in size as s
in Fig. 1. Unfortunately, our numerical data for the leng
scale is inconclusive regarding the asymptotic dependenc
L(t) on t. In part, numerical problems with inelastic co
lapse limit the time window over which length-scale data a
available. Our data are broadly consistent with diffusi
growth (L(t);t1/2), but more comprehensive simulation
are required for a conclusive result.

Figure 8~b! plots data for ln@Lv(t)# vs lnt for the same
sets of (n,e) values as in Fig. 8~a!. Again, our results are
inconclusive regarding the asymptotic dependence ofLv(t)
on t. For example, the dataset for (n.0.46, e50.90) is
consistent with diffusive growth,Lv(t);t1/2, over an ex-
tended time range. However, the same is not true for
other datasets shown.

Finally, Fig. 9 examines the relationship between r
time t and the collision timet. For an elastic granular ga
(e51), we expect the relationship to be linear. For the
elastic granular gas (e,1), there is a complex relationshi
betweent andt. In the HCS,t(t) is given by Eq.~1!. Figure
9~a! plots eet/4 vs t for early times—the resultant linear plo
confirms the validity of Eq.~1!. As a matter of fact, the
scaling relationship in Eq.~1! is valid well beyondtc ~or tc).
The appropriate values oftc are specified in the figure cap
tion.

Figure 9~b! plots ln(t2tc) vs. ln(t2tc) for the same pa-
rameter values as in Fig. 9~a!. The numerical data in Fig

FIG. 8. ~a! Plot of lnL(t) vs lnt, where the characteristic lengt
scaleL(t) is obtained from the density correlation function. W
present data for (n,e)5(0.46,0.80),(0.46,0.90),(0.31,0.90) ~de-
noted by the specified symbols!. The solid line has a slope of 1/2
and corresponds to diffusive growth.~b! Analogous to~a!, but for
the characteristic length scale of the velocity field,Lv(t).
2-9
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9~b! is consistent with the asymptotic power-law behavi
t(t);t2/3. We see the same scaling behavior for a w
range of parameter values. If we assume a diffusive beha
for the length scales, we see that their asymptotic behavio
real time isL(t),Lv(t);t1/3. This result for cluster length
scales is consistent with the earlier result of LH@20#. Coin-
cidentally, this domain growth law for the density field in th
ICS is the same as the LS growth law for phase separatio
binary mixtures. Of course, as we have stressed earlier
physical reasons for segregation in both cases are quite
ferent.

IV. SUMMARY AND DISCUSSION

Let us conclude this paper with a summary and discuss
of the results presented here. We have undertaken a com
hensive MD simulation of ad52 gas of freely evolving
inelastic granular particles. The grains are monodisper
smooth, and hard, and their collisions conserve momen
but dissipate energy. Our simulation uses an event-dri
algorithm, and is performed for a wide range of inelastic
and density parameters.

We started off by reviewing the phenomenology, and a
lytical and numerical results available for this problem. T
granular gas initially loses energy in a HCS, where the d
sity field is essentially uniform but the velocity field exhibi
vortexlike structures. As particles collide, there is a lo

FIG. 9. Dependence of collision timet on real timet. ~a! Plot of
e(et/4) vs t/105 for early times. We present data fore50.90 andn
.0.23, 0.31, 0.46, as indicated. The crossover~real! times for
these parameter values aretc.9565 (n.0.23); tc.7582 (n
.0.31); andtc.1906 (n.0.46). The solid lines correspond to E
~1!. ~b! Plot of ln@t2tc# vs ln@t2tc# for the same parameter value
as in ~a!. The solid line has a slope of 2/3.
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parallelization of velocities as normal velocities are dis
pated. However, the overall momentum is conserved. Th
the evolution of the velocity field is reminiscent of orderin
dynamics in theXY model. However, the underlying mecha
nism for domain growth in the velocity field for the granul
gas is the diffusive motion of vortex defects, rather th
vortex annihilation due to surface tension—as in theXY
model.

The fluctuations in the velocity field drive the growth o
inhomogeneities in the density field. After a crossover tim
tc , the growing fluctuations in the density field saturate a
the system evolves into ICS. For timest@tc , there is a
complex pattern formation and evolution in both the dens
and velocity fields. Earlier works@8–22# have enabled a
good understanding of the HCS and the instability wh
gives rise to the ICS. However, there has been no clear c
acterization of the asymptotic behavior of nonlinear dom
growth processes in the ICS.

In this paper, we have focused on understanding the
tern dynamics in the ICS. We find that the ordering morph
ogy of the density field is comparable to the phase order
in a ferromagnet~i.e., case with nonconserved order para
eter!; and the evolution of the velocity field is equivalent
the ordering dynamics of the nonconservedXY model. Of
course, there is an overall conservation of density and m
mentum. However, this is manifested in the form of a glob
~rather than local! conservation law, because particles stre
over extended distances and are deposited on distant clus
In the context of phase ordering dynamics, it is well know
that global conservation laws do not play an important r
in determining the evolution dynamics or morpholog
@32,33#.

It is useful to quantify the evolution morphologies in th
ICS using correlation functions, structure factors, and
main growth laws. We find that the nature of defects, e
domain walls, vortices, determines short-distance singul
ties in the scaled correlation functions; and large-wa
vector power-law decays of the scaled structure facto
There is a good understanding of these singularities in
context of phase-ordering systems, and the available res
are directly applicable in the present context. More genera
the scaled correlation functions and structure factors in
ICS are in good agreement with analytic results for nonc
served ordering fields. There are some differences du
global conservation laws, which require that*drWCcc(r ,t)
5Scc(0,t)50, and *drWCvv(r ,t)5Svv(0,t)50. This is
only possible if there are regions in whic
Ccc(r ,t),Cvv(r ,t),0. We speculate that these regions m
constitute nonscaling portions of the correlation functio
which vanish ast→`.
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