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Kinetics of inhomogeneous cooling in granular fluids
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We study the dynamical behavior of a freely evolving granular gas, where the particles undergo inelastic
collisions. The velocity and density fields exhibit complex pattern dynamics, which is reminiscent of phase
ordering systems. For example, in the initial time regime, the density field &apsoximately uniform, and
the system is said to be inf@omogeneous cooling statelCS). At later times, the density field undergoes
nonlinear clustering, and the system continues to lose energy inhemogeneous cooling statiCS). We
quantitatively characterize the HESCS crossover as a function of system parameters. Furthermore, we study
nonlinear growth processes in the ICS by invoking analogies from studies of phase ordering dynamics.
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[. INTRODUCTION sariet al. [22] have undertaken preliminary studies of corre-
lations in the density and velocity fields in the HCS and ICS.
There has been much recent interest in the properties d¢f particular, these authors have emphasized the analogy be-
powders or granular materigls—3], which consist of assem- tween the ICS and the behavior of a phase-ordering system,
blies of mesoscopic particles with sizes ranging frompdd  i.€., the dynamical evolution of a homogeneous multicompo-
to 1 cm. These materials are of obvious scientific and techtent mixture that has been rendered thermodynamically
nological relevance, and exhibit features intermediate tdinstable by a rapid quench below the critical temperature
those of solids and fluids. There have been many studid®3—25.
[1-3] of the static properties of these systems, e.g., forma- In this paper, we present detailed results from molecular
tion and structure of granular heaps; stress-distribution prodynamics(MD) simulations of the HCS and ICS. In particu-
files in sand-piles, etc. The dynamical properties of granulalar, we focus upon the morphological features of the density
systems are also of great interest. An important characteristignd velocity fields in the HCS and ICS, and their nonlinear
of grains is that they undergo inelastic collisions which dis-evolution [26]. We invoke analogies with phase-ordering
sipate the system energy. Thus, granular systems exhibit irfystems to clarify the evolution of the granular gas; e.g., the
teresting dynamical behavior only when the collisional en-dynamical scaling of correlation functions and structure fac-
ergy loss is compensated by the input of energy fronfors, general features of scaling functions, the domain growth
external driving, and the system settles inthanequilibri-  laws, etc. Of course, the physical mechanisms driving clus-
um) steady-state behavior. In this context, experimentalisté€ring in both cases are completely different, as we will elu-
have considered various standard geometries for agitatingjdate later.
granular systems; e.g., horizontal and vertical vibrations on a This paper is organized as follows. In Sec. Il, we provide
platform[4], pouring through a chutis], rotation in a drum  a@n overview of analytical and numerical results available for
[6,7], etc. All of these experimental situations give rise tothis problem. In Sec. Ill, we present detailed numerical re-
diverse examples of pattern formation, which have been o$ults from our simulations. Finally, Sec. IV concludes this

great research interest. paper with a summary and discussion of our results.
In this paper, we focus on the dynamical evolution of an

initially homogeneous system of inelastic granular particles. Il. OVERVIEW OF EARLIER RESULTS

The system is not externally driven in any manner. There- A. Analytical results

fore, inelastic collisions between particles result in a loss of ] i

ceived considerable attention in the literat(8e-22). In the & State with uniform density and temperature; and a coarse-
initial stages, the system is infomogeneous cooling state 9rained velocity field which is |d2ent|cally zero. 'I;he_granular
(HCS), with the density field being approximately uniform temperature is defined a=(v*)/d; where (v°) is the

[8]. However, the HCS is linearly unstable to fluctuations,Sauared average of the granular velocity distributidnis
and the system evolves into ahomogeneous cooling state the dimensionality, and we set the mass of granular particles
(ICS), where particle-rich clusters are formed and gi®@k  to unity. The homogeneous system cools in titres T(t)

This instability occurs only for wavelengths larger than a=—ew(T)T/d, where e=1—¢€?, e being the coefficient
critical wavelength that depends on the inelasticity parameteof restitution. Here,o(T) is the collision frequency at
[15]. The primary focus of many earlier studies has been théemperature T, and has the approximate form
time-dependent evolution of averaged system quantities, e.gua(T) =7 *2Q4x(n)ne® 1TY?2  [27,16, where Q4
average energy per particle or “temperature.” However, this=27%9%/T'(d/2) is the total solid angle ang(n) is the pair

is inadequate because both the HCS and ICS are characteerrelation function at contact for hard spheres with number
ized by strong correlations in the density and velocity fields.density n and diametero. The initial temperature of the

In a recent work, van Noije and co-workdfs] and Baldas-  granular fluid isTo, and we set(T)=w(To)(T/To) Y2
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These considerations yield Haff's cooling law for the dependence of the average cluster dizg). LH argue that
HCS, T(t)=To(1+[ew(Ty)/2d]t) 2. It is also useful to their numerical data are consistent with a power-law growth
considerr(t), which is the average number of collisions suf- L(t)~t?, where §=0.3. In this context, we should remark

fered by a particle till timg. We have that long-time simulations encounter problems with inelastic
collapse, where a group of particles may undergo an infinite
N S _E ew(To) number of collisions in a finite time period. This problem has
()= | dt'w(t’)=—1In[ 1+ t (1) T )
0 € 2d been studied in some detail by Bernu and Mazi@d], and

McNamara and Youn§12,13. In their simulations, LH use
the so-calledime-of-contacimodel[19] to avoid unphysical
In terms of 7, the Haff's cooling law has the simple form problems due to inelastic collapse.
T(7)=Tee (€7, Finally, we would like to discuss a recent investigation by
The granular system does not remain in the HCS for alBaldassarret al. (BMP) [22], who formulated a simple lat-
time, as both the velocity and density fields are unstable téice model to mimic inelastic collisions of granular particles.
fluctuations. The first study of this is due to Goldhirsch andBMP have obtained an interesting range of analytical and
co-workers[9], who proposed a nonlineahear instability —numerical resultsin d=2) from their model. In particular,
mechanism for the growth of inhomogeneities in the densitythey focus upon various aspects of the evolving velocity
field. A subsequent study of this is due to McNampta], field, e.g., distribution functions, correlation functions, struc-
who investigated linearized hydrodynamic equations for uniure factors, autocorrelation functions, etc. They find that the
driven granular gasg44,15. A recent, thorough exposition characteristic scale of the transverse and longitudinal veloc-
of linear instabilities of the HCS is due to van Noije and ity structure factors grows as,~ 72, consistent with the
co-workers (NE) [16]. These authors demonstrate that aanalytical results of NE.
noise reductioomechanism leads to transverse instabilities in ~ This concludes our overview of earlier work on the kinet-
the velocity field, i.e., short-wavelength fluctuations areics of cooling in inelastic granular fluids. To summarize,
eliminated more rapidly due to momentum conservation, rethere is a good understanding of the HCS, and the HCS
sulting in a multivortex pattern on diverging length scales.—ICS crossover. However, our understanding of the kinetics
Pattern formation in the velocity field precedes the emerof cooling and pattern evolution in the ICS is relatively lim-
gence of inhomogeneities in the density field, which we disdited. In the present work, we perform comprehensive simu-
cuss next. The growth of the vortex scale is diffusive, i.e.lations ofd=2 granular fluids for a range of densities and
L,(7)=2m¢ \(eld) 7, whereé, =+/(2d/€)l,, with |, being  inelasticities. Our goal is to obtain a thorough characteriza-
the time-independent mean free path= \/ﬁ/w('r)]_ tion of nonlinear domain growth in the ICS. In particular, we
The length scale for longitudinal fluctuations behaves avill highlight the analogies between domain growth in the
'-H:27T§HW’ whereg = (2d/€)l,. However, both the ICS and phase-ordering dynamics in thermodynamically un-
transverse and longitudinal fluctuations are exponentiallptable systems.
damped in time. This should be contrasted with the fluctua-
tions in the density field, which are driven by longitudinal l1l. DETAILED NUMERICAL RESULTS
velocity fluctuations. These actually grow with tinéor
length scales.>¢)), and must be saturated by an appropri- , . )
ate nonlinearity. However, the linear stability analysis yields, & use an event-driven algorithm for solving the Newton-

the initial growth dynamics for clusters, i.4.(7)=L (7). ian dynamical equations for an assembly of inelastic par-
ticles [29]. The collision process conserves momentum,

though the energy is continuously dissipated due to the in-
B. Numerical results elastic nature of granular particles. We consider identical
hard spheregmonodispersed systgnwith unit mass (n

i ; =1) and diametewr=1. After a collision between thi&th
simulations by McNamara and Your|d.2], and Sela and . . . o= - .
Goldhirsch[10]; and ind=2 MD simulations by Goldhirsch and jth part|cle§,_ having velom_tleei andu;, respectively,
and co-workers[9], McNamara and Yound13], Luding the new velocities are obtained ag ;=v;;—[(1+e)/
et al. [18], and Luding and Herrmanf20]. In particular,  2][n-(v;;—v;;)In [29]. Here,n is the unit vector parallel to
Luding et al. [18] considered collisions of rough granular the relative position of the particles, pointing frgnto i at
particles ind= 2,3, and confirmed that Haff's law applies for the time of collision. For elastic collisions, we haee 1.
both translational and rotational energies. For granular material£<1 in general.

As stated earlier, our primary interest is to study the non- In our simulations, there are two different definitions of
linear regime of pattern dynamics in the ICS. The appearanciéme. First, we haveeal time t, which is measured in arbi-
of the clustering instability was first demonstrated numeri-trary units. Second, we also measure time in units of the
cally by Goldhirsch and co-workef®,10], and McNamara number of collisions per particle, which we denoteradn
and Young[12]. A recent study of this problem is due to the HCS,t and 7 are related by Eq(1). Most of our subse-
Luding and HerrmanrLH) [20], who performedd=2 MD  quent results are presented in termg pfs this constitutes a
simulations for a range oé values and studied the time more natural measure of time for the present problem.

A. Details of simulations

The Haff's law for the HCS was confirmed oh=1 MD
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The initial condition for a run consisted of a homoge- 1=10
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gas using various statistical quantities, which are calculate £ ,3
as an average over five independent runs upr4c500. CETEERAAAN :55:52
These arga) equal-time correlation functions and structure % :
factors for the density and velocity fields, afil) domain

growth laws for the characteristic length scales of the density 1=250 7=250

and velocity fields. The precise definitions of these quantitie - CRSRX Y

will be provided subsequently. o .2
Before we conclude this section, it is appropriate to dis- . " AL

cuss the parameter ranges in our simulations. As stated ea =t *

lier, we fix the box size a®N,=256. Numerical data are PR, A

obtained for the following parameter se¢s: N=30 000 (or NI :’ IS %

n=0.46, »=0.36), ande ranging from 0.8 to 0.975 in steps : 4 y .

of 0.025. (i) e=0.90, andN ranging from 10000 to 40 000 sdftisiiien ~s o S

in steps of 5000, i.en=0.15—0.61. SIS - SRk3 e

FIG. 1. Evolution of an inelastic granular gas from a homoge-
neous initial condition. The system density was 0.46; and the

Figure 1 shows the evolution of tlte=2 inelastic granu- restitution coefficient wag=0.90. The initial kinetic energy per
lar gas from a homogeneous initial condition. The systenparticle wasE(0)=(N,0)?/6, whereN,=256 is the system size
parameters wer@=0.46 ande=0.90. The snapshots are ando is the particle diameter. Further details of the simulation are
labeled by the collision time, which refers to the number of Provided in the text. The frames on the LHS refer to the coarse-
collisions per particle. We will always measure time in units9rained velocity field. The vector directions correspond to the di-
of 7, which accounts for the reduced collision frequency dug 8Ction of the local velocity field—the magnitudes have been "hard-
to the cooling process. In Fig. 1, the frames on the Ieft-han(fned to unity. For clarity, we only show a 8Zomer of the 258

. . ) attice, as indicated in the snapshots on the RHS. The frames on the
side (LHS) and right-hand sidéRHS) refer to the granular ¢ correspond to the coarse-grained density field. Regions where

velocity field v(r,7) and the density fields(r,7), respec- the local density is larger than and less than the average density are
tively. The coarse-grained fields at a lattice point are obmarked in grey and white, respectively. The black circles in the
tained by averaging over boxes of sizex)5 centered at that RHS frames denote the vortex centers in the velocity field. The
point. To clarify the nature of pattern formation, we havesnapshots are labeled by the appropriate collision timeiz., the
“hardened” the velocity field in Fig. 1, i.e., the length of all average number of collisions per particle.

vectors has been set to unity. The velocity field is assigned

the value zero at points with no particles in the associated | Fig. 1, the evolution of the velocity field is character-
coarse-graining box. Such points are unmarked in Fig. 1. Thgseq by the emergence and diffusive coarsening of vortices.
density field on the RHS of Fig. 1 is depicted in & binary There is a progressive parallelization of the local velocity
representation. We introduce the order paramefér,r) field due to inelastic dissipation of the normal velocity com-
with values+1(—1) at points, where the number density is ponents. As discussed earlier, pattern evolution in the density
larger than (less tham the average number densityn ( field is slower than that for the velocity field. Nevertheless,
=0.46, in this case Regions wheref=+1 are marked well-defined clusters corresponding to the ICS are already
gray, and regions wherg= —1 are unmarked. seen in the snapshot a&50. These clusters grow with time

B. Evolution morphologies
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FIG. 2. (a) Plot of ITE(7)/E(0)] vs 7, whereE(7) is the average
particle energy at timer. We present data fon=0.46, ande nx(n)*

=0.85, 0.90, 0.95, as indicated. The solid lines have slope )
— €2 (e=1—¢?) and correspond to Haff's cooling law id=2. FIG. 3. Dependence of crossover timg for the HCS~ICS

(b) Analogous to(@), but fore=0.90 andn=0.15, 0.31, 0.46. The transition on system parameters. The crossover time is obtained
line has slope- €/2. (c) Plot of IME(7)/E(0)] vs In~ for the param- from the energy plots in Figs(& and 2b) as the point of deviation

eter values shown iffa). The solid line has a slope of 1. (d)  from Haff's law. (a) Plot of e“3" vs 7, for n=0.46; ande ranging
Analogous to(c), but for the parameter values shown(b). from 0.80 to 0.975. The solid line denotes the best linear fit to the

data.(b) Plot of r.e”(¢@7 vs ny(n)? for e=0.90; andn ranging
] o o from 0.08 to 0.61. Again, the solid line denotes the best linear fit to
in a manner reminiscent of phase ordering in two-componerge data.

systemdg23]. The vortex centers in the velocity field are also

shown(as black circlekin the frames on the RHS. One sees  The crossover time can be estimated from the work of
that the vortex density diminishes with time, and the distri-Brito and Erns{17] as follows. In the HCS, the Haff cooling
bution of vortices is primarily confined to regions of low law is T(7)=Te (¢97. Brito and Ernst use mode-coupling
density, as there is a rapid parallelization of velocities in theechniques to obtain the asymptotic energy de@aythe
high-density region due to multiple collision processes.ICS) as

There is no strong correlation between the location of defects

in the velocity field(i.e., vortice$ and defects in the density To
field (i.e., interfaces or domain boundanieBurthermore, the
various time scales in this problem, including the emergence

of the ICS, diverge ag—0 ore—1. Figures 2c) and 2d) test the validity of this asymptotic ex-
pression by plotting IFE(7)/E(0)] vs In7 for the parameter
values in Figs. @) and 2b), respectively. In each casapart
from n=0.15¢=0.90), we see that the asymptotic cooling
behavior is consistent with(7) ~ 71, i.e., thed=2 version

range of €,n) values. Figure @) corresponds ta=0.46 of Eq. (2). For the low-density case with=0.15, it is pos-
and e=0.85,0.90,0.95. The initial exponential decay corre-Sible that our simulation has not accessed the asymptotic

sponds to Haff’s cooling law, and the solid lines have sloped®9!Me- _ , _

—eld. There is a crossover time,, after which Haff’s A comparison of Haff's law and Ed2) yields the cross-
law does not apply and the cooling rate becomes slowePVer timer. as the solution of

Similarly, Fig. 2b) corresponds toe=0.90 and n
=0.15,0.31,0.46. The initial slope is seen to be independent TN
of n (as expectex] but the crossover time. does depend on ¢ 2
n. In Figs. 2a) and 2b), the crossover time is defined as the

point of deviation from Haff's law, i.e., where the data pointswhere =1, and we consider the case—0 so that
no longer lie on the corresponding solid line. §[=(2d/e)lg]> ¢ [=V(2d/€)lo]. Ford=2, Eq.(3) sim-

2

d_1+ 1)(4776 )‘d’Z
e b — T
g gl d

C. Homogeneous cooling state and crossovers

Let us first briefly focus on the HCS and the HEGECS
crossover. Figures(d) and 2b) plot INE(7)/E(0)] vs 7 for a

B d
—(eld) o (d_l)(?_;_) x(n)9nd—1, (3
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plifies as7.e™ (¢27c~ny(n)?, where we ignore the prefac- t=25 (NC-XY) t=25 (NC-TDGL)
tors. Following NE[16], we use the Henderson-Verlet-
Levesque approximatiod30] for the d=2 hard-sphere
correlation function at contact, viz.,
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Figure 3a) plotse(€? vs 7 for n=0.46 and a range of
e values(specified in the figure captignFigure 3b) plots
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D. Pattern dynamics in the inhomogeneous cooling state

»
»
>

Next, let us focus on the main theme of this paper, viz., |3
quantitative characterization of the pattern morphology, and3
evolution for the density and velocity fields. In this context,
we would like to invoke an analogy between the pattern
dynamics in Fig. 1 and the dynamics of phase ordering
[24,25. Of course, the underlying mechanisms of domain _ _
growth are quite different in both cases. For example, segre t=1000 (C-XY) t=1000 (CH)
gation dynamics in a binary mixture is driven by surface [mmm:sEztmusiig
tension (absent in granular materialdetween dissimilar 33555 e
components. On the other hand, in the case of granular gase i
segregation arises in a purely dynamical context due to the; LR 35
reinforcement of density fluctuations arising from higher col- :
lision frequency and faster cooling in regions of high density.

The granular fluid can be described by nonlinear hydro-
dynamic equations for the density, velocity, and temperaturd 222 22
fields, in conjunction with an energy loss tefi®]. Wakou  |333#2533808
et al. [31] have shown that fluctuations in these quantities
obey time-dependent Ginzburg-LandaWDGL) equations of FIG. 4. Evolution pictures from a random initial condition for
phase ordering dynamics with a nonconserved order paranphase-ordering systems. The lattice size is?258nd periodic
eter[24]. In this paper, we elucidate the TDGL description of boundary conditions are applied in both directions. The upper,
granular dynamics. middle, and lower LHS frames are obtained from simulations of the

There are two important classes of phase-ordering sygionconserveY (NC-XY) model; globally conserve®Y (GC-
tems[24,25: (a) systems with nonconserved order param-XY) model with()=0; and conserved XYC-XY) model, respec-
eter, e.g., ordering of a ferromagnéh) systems with con- tively. The ¢ field is hardenedi.e.,||=1) and the direction vec-
served order parameter, e.g., phase separation of a binatigrs are plotted in the snapshots on the LHS. For clarity, we only
mixture. The following nonlinear equation describes the nonshow a 32 corner of the 256attice. The upper, middle, and lower
equilibrium evolution of AB mixtures (in dimensionless RHS frames are obtained from simulations of the nonconserved
units): TDGL (NC-TDGL) model; globally conserved TDGIGC-TDGL)

model; and CH model, respectively. In the GC-TDGL and
ﬁw(F,t) . - - CH simulations, the average value of the order parameter is
— =(=VH)M(r,t)—(r,t)3+V2y4(r,t)], (5  (¥)=-0.08, corresponding to an average densitnof0.46, as in
Fig. 1. Regions with density greater than the average density are
marked in grey.
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where zz/(F ,t) is an order parameter that differentiates be-
tween A-rich (¢=+1, say and B-rich (¢y=—1, say re- the systems in clas®) above. A typical evolution snapshot
gions. Equatior(5) with m=0 is referred to as TDGL equa- for the CH equation(from a random initial condition with
tion, and describes the systems in cldss above. The (y)=,=—0.08, as in Fig. Lis shown in the lower RHS
corresponding evolution from a random initial condition is frame of Fig. 4. In this case, the domain growth process is
shown in the upper RHS frame of Fig. 4. The coarseningslower and the length scale of the coarsening domains obeys
system is characterized by a diffusive growth ldwit)  the Lifshitz-Slyozov(LS) law L(t)~tY3[23-25.

~t12 [23-25. On the other hand, Eq5) with m=1 is The clustering states in the IC&ig. 1) are pictorially
referred to as the Cahn-Hilliaf@CH) equation, and describes similar to the ordering patterns in the TDGL model. This is at
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variance with the intuitive expectation that the ICS patternsself-similar in time, and only changes by a time-dependent
should be analogous to those in the CH model, because atale factor. Thus, we expect the density correlation function
the conservation law governing the density field. Howeverto exhibit the dynamical-scaling properft$8]:

the conservation law in the ICS evolution is global rather
than local, because particles stream freely across empty
spaces and are deposited on distant clusters. In the context of
phase ordering dynamics, it is known that systems with glo-

1 - - . -
Cyylr,n)= vj dR[{H(R,7) p(R+r,7))

bal conservation of the order parameter are in the same uni- —((R, ) (P(R+T1,7))]

versality class as systems with nonconserved order parameter

[32,33. The middle RHS frame of Fig. 4 shows an evolution :g<L), 7
shapshot for the TDGL equation with a global conservation L(7)

law (referred to as the GC-TDGL equation where GC stands .
for globally conservely which enforces )= — 0.08 (as in whereV is the system volume, and the angular brackets refer

Fig. 1). Clearly, the morphologies for the NC-TDGL and to an averaging over independent runs. The correlation func-

GC-TDGL equations are comparable. In this case, NC stand®"S presented here are always normalized so @{atr)

for nonconserved. This pictorial analogy between the ICS:1' tlr? Eq.(7)r,] gl(x) Is tr:je_ sga(ljing fugcti;)nft?at cr]rar:act?r-
and patterns in the TDGL equation will be quantified later,'#€S th€ morphology, and IS indeépendent of ime. The Struc-

when we present results for correlation functions and structure factor of the density field is defined as the Fourier trans-

ture factors. form of the correlation function, and has the following

Next, let us consider the velocity-field dynamics depictedScaling form:
in the frames on the LHS of Fig. 1. This evolution is remi- o
niscent of coarsening in thXY model [25], which is the SW(k,r)Ef dre'k'rCW(r,r)=L(T)dé(kL(r)). (8)
two-component generalization of E():
For the velocity field, we study the isotropized correlation

(1 1) . S, .. function
2 = VARO[ P + V2 0], .
(6) va(r,T)EvJ dR[(v(R,7)-v(R+T1,7))
where /=, ,1,). The evolution in Eq(6) parallelizesys —(0(R,7)-(v(R+1,7))]
locally via the annihilation of vortices and antivortices,
driven by the surface-tension reduction mechanism. Equation _ r )
(6) with m=0 corresponds to the case with nonconserved A Ly(n)’

order parameter. A typical evolution picture for this case is
shown in the upper LHS frame of Fig. 4. The correspondingvherelL () is the characteristic length scale of the velocity
domain growth law$34] areL ,(t)~ (t/Int)¥? for d=2 and field. Definition in Eq.(9) averages correlation functions for
L,(t)~t¥2 for d>2. On the other hand, E@6) with m=1  the transverse and longitudinal components of the velocity
corresponds to the conservdy model[35,36], where the field, which evolve on different time scales in the linearized
dynamics |Oca||y conserves bowh and ¢2_ A typ|ca| evo- reglme[16] The averaging pr(zcedure is reasonable when the
lution snapshot for this case is shown in the lower LHSpatterns are isotropic and the vectors are randomly ori-
frame of Fig. 4. The associated domain growth laws for theented. The structure factor of the velocity fiefdl, (k,7), is
conservedXY model arel,(t)~t¥*in d=2, where the rel- obtained as the Fourier transform ©f,(r, 7).
evant defects are vortices; and,(t)~(tInt)¥* in d=3, The correlation functions and structure factors presented
where the relevant defects are vortex strifigs,37. here are always computed for hardened coarse-grained fields.
Intuitively, we might expect that domain growth in the Thus, the fluctuations in the order-parameter field are set to
ICS velocity field is comparable to the conservéd model  *1, as depicted on the RHS of Fig. 1. Similarly, the ampli-

as the local parallelization of velocitiédue to inelastic dis- tyde of the velocity field is set to unitW(F, 7)|=1, as de-
sipation of normal componentsccurs in conjunction with picted on the LHS of Fig. 1. This procedure clarifies the talil
momentum conservation. However, because of the streaminggime of the relevant structure factor, which corresponds to
of particles over long distances prior to collision, a morescattering from the cores of individual defects. There is a
appropriate model is th¥Y equation with global conserva- gjight violation of the conservation laws due to hardening,
tion (GCXY). The middle LHS frame in Fig. 4 shows a put we have confirmed numerically that this is negligible. As

typical snapshot for the G&Y model with(5)=0. We will mentioned earlier, all statistical quantities presented here are
now proceed to quantify the pictorial analogies discusse@btained as averages over five independent runs.
above. Figure 5a) examines the dynamical-scaling property of

The evolving granular gas is characterized by two lengtithe density correlation function forn(e)=(0.46, 0.90).
scales in the ICS, i.e., the typical cluster slzgr) and the  This figure superposes data G, (r,7) vsr/L from three
characteristic vortex sizé, (7). The existence of these different times(with = 17;) for the evolution depicted in
length scales suggests that the morphology is statisticalli#zig. 1. The characteristic lengthis defined as the distance

011302-6



KINETICS OF INHOMOGENEOUS COOLING IN . .. PHYSICAL REVIEW B8, 011302 (2003

1 T Pa—r>s it has a very small negative value. This is a consequence of
0,3% . the conservation law, which fixefdrC(r,t)=0. For the
06k | sake of clarity, we do not present the correlation function for

e the GC-TDGL equation in Fig.(8).

b; 0.4 . Our numerical results for the correlation function in the

o % ICS are better approximated by the OJK function than the
’ i CH function in the region wher€,,,>0. This provides a

confirmation of the pictorial analogy discussed earlier. Let us
next discuss some general considerations that determine spe-
cific features of the ICS morphologies. For example, the den-

/L sity correlation functions decay linearly for smak=r/L as
2 —— , — follows:
o e .. -] 1=
ST o 1=150 .
_or 7 *«% o w5 g(x)=1— ax+ Bx3+higher-order terms,  (11)
N/\ 7 09\
g 2r I.i' "é, where a, 8 are constant§25]. This is a consequence of the
< 4 presence of sharp domain boundaries between grain-rich and
f grain-poor regions. The nonanalytic smallbehavior of
g S g(x) results in a power-law decay of the structure factor
n Syu(k, 7)~k™(@*1) for large k, which is referred to as the
3 _'1 (') '1 Porod tail[40]. Furthermore, the correlation functions obey

the sum ruIedeCW(r,r):SW(O,r)=O, which is a direct
consequence of the conservation law. In the ICS correlation
FIG. 5. () Dynamical scaling of density correlation function function, this sum rule is satisfied b§,,(r,7) becoming
C,,(r,7) for the evolution depicted on the RHS of Fig.(dith n slightly less than zero over an extended range oflues.
=0.46 ande=0.90). We superpose data f6r,,(r,7) vsr/L from  (This should be contrasted with the CH correlation function,
three different timegdenoted by the specified symbplwith -  which exhibits marked oscillations before being damped to
> 1. . The characteristic length(7) is defined as the distance over zero)
which the correlation function decays to half its maximum value. \We have mentioned earlier that the cluster growth process
The definition ofC,,(r,7), and the relevant averaging statistics, is (streaming and aggregatipim the ICS obeys a globdtather
provided in the text. The dashed line denotes the OJK function irhan local conservation law. We speculate that the region
Eg. (10). The dot-dashed line denotes the scaled correlatioq,vherecw(r,T)<0 may constitute a nonscaling part of the
function (at t=1000) for a phase-separating lattice gas with thecqrrelation function, which is pushed out tdL=c as r
same average density, i.en=0.46. (b) Scaling plots of the _ . | this case, the scaled correlation function would de-
structure factors corresponding t@). We superpose data for cay monotonically(as r—) as in the case with noncon-

In[SMk,r)(k)z] vs Ik/(ky] from three different times. The dashed :
line denotes the OJK function, and the dot-dashed line denotes thseerved order parameter, e.g., E0). Our numerical results

scaled structure factgat t=1000) for a phase-separating system n IFZI_g. 5(a)5;|;) nhOt acct:ﬁss dthls rgglrlrle a? yet.f the struct
with average density=0.46. The solid line has a slope 6f3 and Igure shows the dynamical scaling of the structure

corresponds to thé=2 Porod’s law, which characterizes scattering factors qorrespondl_ng to _Flg(é}. In this Cfllse’ the appropri-
off the sharp interfaces. ate scaling length is defined ag7)~ (k) *, where(k) is

the first moment of the structure factor. In the scaling regime,
over which the correlation function decays to half its maxi-We expect all definitions of the characteristic length scale to
mum value[ C,,,(0,)=1]. The data collapse in Fig(# is be equn(alen_t upto prefa_lcyo[§3]. The tail of the structure
reasonable, confirming that the system evolution is describef®ctors in Fig. $b) exhibits the Porod decays,,(k,7)
by a single length scale. The dashed line in Fig) Benotes ~k "%, which characterizes scattering off the sharp inter-

the ana|ytic result due to Ohst al. (OJK) [39] for Ordering faCES[40]. The dashed line denotes the OJK function, which
in the NC-TDGL equation: constitutes an excellent fit to our numerical data. Discrep-

ancy forr/L=2 in Fig. 5a) is reflected in the smal-data in
2 Fig. 5b). The scaled structure factor for the CH equation is
g(x)=—sin"*(y), (100 gdenoted by a dot-dashed line. Note that the local conserva-
tion law for the CH equation results in a power-law behavior
where y=exp(-r?L?. On the other hand, the dot-dashed for smallk values,S,,(k,t) ~k* ask— 0 [41]. However, the
line denotes the scaled correlation function obtained from &CS structure factor appears to decay almost monotonically
simulation of the CH equation for phase separation. The avirom k=0", as is usual for structure factors in ordering
erage density for the CH simulation is chosen to be the samgroblems characterized by a nonconserved order parameter.
as that for the granular gas, i.€4)=—0.08. We have also [Of course, global density conservation dictates that
studied the correlation function for the GC-TDGL equationS,,,(0,7)=0.]
with (#)=—0.08. It is numerically indistinguishable from Figure 6 shows the dynamical-scaling property for the
the OJK function, except for a limited regior$5), where correlation function[Fig. 6@] and structure factofFig.

In[k/<k>]
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FIG. 6. Analogous to Fig. 5, but corresponding to the coarse-

grained velocity field depicted on the LHS of Fig.(&) The dashed
line denotes the BPT function in Eq12) with n=2. The dot-
dashed line denotes the scaled correlation fund@bb= 1000) for
the conserveXY model[36]. (b) The dashed line denotes the BPT
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[\ o n=0.46, e=0.80
4 o 0=0.46,e=0.90
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a
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/L
1 Té\ ! o n=0.46, e=0.80
1 o n=0.46,e=0.90
0.75 -3 o n=0.31,e=0.90
L]
05 ¢ -

FIG. 7. (a) Comparison of scaled density correlation functions
for (n,e)=(0.46,0.80), (0.46,0.90), an@®.31,0.90 (denoted by
the specified symbols Data are computed at collision time
=150. The dashed line denotes the OJK functibh Analogous to
(a), but for the velocity correlation functions. Data are computed at

function, and the dot-dashed line denotes the scaled structure factg@llision time 7=150. The dashed line denotes the BPT function.

(att=1000) for the conservedY model. The solid line has a slope
of —4 and corresponds to theé=2 generalized Porod’s law for
scattering off the vortex defecf84].

6(b)] of the velocity field depicted in Fig. 1. In Fig(#®, the
dashed line denotes the scaled correlation function for th
nonconserved XY model id=2. We should point out that
the scaled correlation function for the GC¥ model with

(v)=0 is numerically indistinguishable from the dashed line
in Fig. 6(@). Hence, we do not show the GCY result in Fig.
6(a). The analytic result for the N&Y model [which has
0O(2) symmetny} was obtained by Pufi34], and generalized
to the Of)-symmetric case by Bray and Pui84] and

Toyoki [34]:
2
o5

where y=exp(-r?/L?; B(x,y) is the B function; and
F(a,b;c;z) is the hypergeometric function. Equati¢i?) is

11n+2

22" 2

ny

n+1 1
h(X):E =

2 '2

;72), (12

usually referred to as the BPT function. The short—distanceN(

x—0 vyields a power-law decay in the corresponding
structure-factor tail, which we will discuss shortly.

In general, the BPT function provides a good approxima-
tion to the scaled correlation function for the ICS, except for
the region whereC,,(r,7) <0 (resulting from the conserva-
tion law). Again, we speculate that the region with ,<0
may comprise a nonscaling portion that is pushed out to
r/lL,=o as r—o. For completeness, we also plot in Fig.
6(a) (dot-dashed linethe scaled correlation function for the
conservedXY model, which is obtained numerically. Clearly,
the velocity-field morphologies in the ICS are comparable to
the nonconserveXY model (or GC-XY mode) rather than
the conserveY model.

In Fig. 6b), the structure-factor tails again exhibit a
power-law decay but with a different exponent than in Fig.
5(b), i.e., S,,(k,7)~k (9*2) for large k. This is also the
characteristic of scattering off the defect cores, except the
defects in the velocity field are vortices and have a2)O
symmetry.[In general, the BPT function for the case with
O(n) symmetry exhibits a “generalized Porod tailS(k,t)
k="M for a largek.] Furthermore, the BPT function

behavior of the scaling function is determined by the pres{qashed lingprovides a good fit to the numerical data for the

ence of vortex defects, and has the following fdi25,34:
h(x)zl—szlnX—Ex2+higher—orderterms, (13

where x=r/L,, and a,B are constants. This behavior is

ICS velocity field in Fig. 6b). Again, we see tha$,,(k,7)
decays almost monotonically frok=0" [thoughS,,(0,7)
=0], with no marked effects of the conservation law. This
should be contrasted with the scaled structure factor for the
C-XY model, where C stands for conserved, which is de-

common to correlation functions for the inelastic granularnoted as a dot-dashed line in Figbp[36].

gas, as well as for th¥Y model. The singularity if(x) as

Next, let us investigate the functional forms of the scaling
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functions across a range of parameter values. Figiag 7 ] By L —
plots the scaled density correlation functiofadl at time 7 5| @ n=046.e=090[ 172
=150, r>1.) for (n,e)=(0.46,0.80), (0.46,0.90), and > n=0.31,0-050 ;;?’gﬂ
(0.31,0.90). We see that the scaling functions are numeri- = 2r ?” ]
cally comparable, indicating that the ICS evolution morphol- S 15k °o°°§ _
ogy is equivalent for different parameter values; even though = ®
the evolution time scales are quite different. We have con- Ir ° .;r' 7]
firmed this superuniversal behavior for a wide range of pa- 05} g g;”j -
rameter values, and Fig(a is a representative result. The | : C @
dashed line in Fig. (& denotes the OJK function. We have 00 1 2 3 4 5 6
confirmed numerically that the scaled correlation function
for the GC-TDGL model has a rather weak dependence on Int
the off criticality (), and is numerically comparable to the 4
OJK function for a broad range ¢f/) values.(Of course, for o n=046.e=080( 1 T
extreme values of the off-criticality, our numerical data 206 et 12
should be compared directly with the data for the GC-TDGL 3 : o.o""" Ny
model and not with the OJK functionThis should be con- = &
trasted with the case of the CH model, where the correlation ;{ 2F °o°"§ .
function has a sensitive dependence on the off-criticality = °°°.,:°£
[23]. 1} 0 02" .
Figure 1b) plots the scaled velocity correlation functions 3 oeef
(all at 7=150, > 1) for the same parameter sets as in Fig. 0 [ R R R L)
7(a). The dashed line denotes the BPT function with 2. 0 1.2 3 4 5 6
In this case, the scaled correlation functions differ somewhat Int

for different parameter values. This is a consequend¢®izfs
in the velocity field, i.e., regions where the coarse-grained FIG. 8. (@) Plot of InL(7) vs In7, where the characteristic length
velocity field is set to zero because no particles are present #faleL(7) is obtained from the density correlation function. We
the coarse-graining box. At a fixed time, there are a largepresent data for r(,e)=(0.46,0.80,(0.46,0.99,(0.31,0.90) (de-
number of holes in the velocity field for tHess elasticand ~ noted by the specified symbalsThe solid line has a slope of 1/2,
less denseases, and a correspondingly larger deviation fronfd corresponds to diffusive growtth) Analogous to(a), but for
the BPT function. The appearance of holes in the coarsdl® characteristic length scale of the velocity fielg(7).
grained velocity field can be reduced by choosing larger
coarse-graining boxes. However, an upper limit on the box). Subsequently, well-formed clusters grow in size as seen
size is set by the core size of vortex defects. in Fig. 1. Unfortunately, our numerical data for the length
For the time regimes considered here, a description irscale is inconclusive regarding the asymptotic dependence of
terms of two uncoupled order parameters is reasonable. A(7) on 7. In part, numerical problems with inelastic col-
more complete description of the asymptotic ordering dy-lapse limit the time window over which length-scale data are
namics, which accounts for the holes in the velocity field, isavailable. Our data are broadly consistent with diffusive
provided by a model with spin-vacancy phase separation, igrowth (L(7)~7?), but more comprehensive simulations
conjunction withX Y-like ordering of the spin variable. This are required for a conclusive result.
is a generalizatiof42] of the Blume-Emery-Griffiths model Figure &b) plots data for IfL,(7)] vs In7 for the same
[43], where the spin exhibits an up-down ordering behaviorsets of (1,e) values as in Fig. &). Again, our results are
In the current context, the relevant model has coupled nonnconclusive regarding the asymptotic dependenck  ¢f)
conservedor globally conserveddynamics for the two or- on 7. For example, the dataset fon£0.46, e=0.90) is
dering fields. At a later stage, we will discuss in detail theconsistent with diffusive growthl_,(7)~ 72, over an ex-
applicability of this model to the IC$44]. tended time range. However, the same is not true for the
Apart from the scaled correlation functions and structureother datasets shown.
factors, it is also relevant to investigate the time dependence Finally, Fig. 9 examines the relationship between real
of various length scales in the evolving system. We havdime t and the collision timer. For an elastic granular gas
already discussed how the length scales for density clustef@=1), we expect the relationship to be linear. For the in-
[i.e., domain size_(7)] and the velocity field[i.e., vortex elastic granular gase1), there is a complex relationship
size L,(7)] are obtained from the correlation functions. betweert andr. In the HCS,#(t) is given by Eq(1). Figure
There is no surface tension between unlike domains in th&(a) plots e€™* vst for early times—the resultant linear plot
present case, so domain growth is driven by the diffusiveconfirms the validity of Eq.(1). As a matter of fact, the
motion of defects. Therefore, we expect thHatr),L,(7) scaling relationship in Eq1) is valid well beyond.. (or 7).
~ 72 in accordance with the arguments of NEB]. Figure  The appropriate values of are specified in the figure cap-
8(a) plots data for IpL(7)] vs In7 for the three sets ofn(,e) tion.
values shown in Fig. 7. There is an initial transient period Figure 9b) plots In(r— 7)) vs. Int—t.) for the same pa-
with no domain growth, corresponding to the HG®e Fig. rameter values as in Fig.(&®. The numerical data in Fig.
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S E——v——— T parallelization of velocities as normal velocities are dissi-
s n=031,¢=0.90 4 pated. However, the overall momentum is conserved. Thus,
30 | 222046, e=0%0 o the evolution of the velocity field is reminiscent of ordering
dynamics in theXY model. However, the underlying mecha-
T 2t nism for domain growth in the velocity field for the granular
"o gas is the diffusive motion of vortex defects, rather than
ok vortex annihilation due to surface tension—as in K¥
model.
| | | | (@ The fluctuations in the velocity field drive the growth of
% 01 02 03 04 05 inhomogeneities in the density field. After a crossover time
s 7., the growing fluctuations in the density field saturate and
t/10 the system evolves into ICS. For times> ., there is a
: : : complex pattern formation and evolution in both the density
6L N _ and velocity fields. Earlier work$8—22 have enabled a
2/3 °°°°“°::o°° good understanding of the HCS and the instability which
s f" _ gives rise to the ICS. However, there has been no clear char-
@ °°¢°:§%%°° acterization of the asymptotic behavior of nonlinear domain
£ 4r 00,.;;35%% - growth processes in the ICS.
o A In this paper, we have focused on understanding the pat-
3 . tern dynamics in the ICS. We find that the ordering morphol-
a ogy of the density field is comparable to the phase ordering
plee I . L ® in a ferromagneti.e., case with nonconserved order param-

eten; and the evolution of the velocity field is equivalent to

In[t-t ] the ordering dynamics of the nonconseryed model. Of
course, there is an overall conservation of density and mo-
mentum. However, this is manifested in the form of a global
(rather than localconservation law, because particles stream
over extended distances and are deposited on distant clusters.
In the context of phase ordering dynamics, it is well known
that global conservation laws do not play an important role
in determining the evolution dynamics or morphology
[32,33.

It is useful to quantify the evolution morphologies in the

FIG. 9. Dependence of collision timeon real timet. (a) Plot of
el¢™ ys t/10° for early times. We present data fer0.90 andn
=0.23, 0.31, 0.46, as indicated. The crossoueal) times for
these parameter values armg=9565 (=0.23); t.=7582 (n
=0.31); and,=1906 (=0.46). The solid lines correspond to Eq.
(2). (b) Plot of I 7— 7] vs INt—t.] for the same parameter values
as in(a). The solid line has a slope of 2/3.

9(b) is consistent with the asymptotic power-law behavior,ICS ) ation f . ¢ dd
#(t)~t23 We see the same scaling behavior for a wide using correlation functions, structure factors, and do-

range of parameter values. If we assume a diffusive behavidF’fa'n growth laws. We find that the nature of defects, e.g.,
i

for the length scales, we see that their asymptotic behavior omqin walls, vortices, detgrmines s.hort-distance singulari-
real time isL(t),L,(t)~tY3 This result for cluster length ties in the scaled correlation functions; and large-wave-

scales is consistent with the earlier result of [20]. Coin- vector power-law decays of the scaled structure factors.

cidentally, this domain growth law for the density field in the There is a good under_standlng of these smgulanﬂes in the
ICS is the same as the LS growth law for phase separation ntext of phas_e-orde_rlng systems, and the available results
binary mixtures. Of course, as we have stressed earlier, t e directly applicable in the present context. More generally,

physical reasons for segregation in both cases are quite dif-e scaled correlation functions and structure factors in the
ferent CS are in good agreement with analytic results for noncon-

served ordering fields. There are some differences due to
global conservation laws, which require thfauiFCW(r,r)
_ _ _ - =S,,/(0,)=0, and [drC,,(r,7)=S,,(0,7)=0. This is

Let us conclude this paper with a summary and discussiognly  possible if there are regions in  which
of the results presented here. We have undertaken a comprg;, (r,7),C,,(r,7)<0. We speculate that these regions may

hensive MD simulation of al=2 gas of freely evolving constitute nonscaling portions of the correlation functions,
inelastic granular particles. The grains are monodispersegyhich vanish as— .

smooth, and hard, and their collisions conserve momentum
but dissipate energy. Our simulation uses an event-driven
algorithm, and is performed for a wide range of inelasticity
and density parameters. S.P. would like to thank H. Hayakawa for useful discus-

We started off by reviewing the phenomenology, and anasions and critical inputs on this problem. He is also grateful
lytical and numerical results available for this problem. Theto M. H. Ernst, I. Goldhirsch, S. Luding, U. M.-B. Marconi,
granular gas initially loses energy in a HCS, where the denand H. Nakanishi for helpful discussions in this regard.
sity field is essentially uniform but the velocity field exhibits S.K.D. acknowledges financial assistance from the Univer-
vortexlike structures. As particles collide, there is a localsity Grants Commission, India.
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